- Baterai
Baterai digunakan pada rangkaian ini berfungsi sebagai sumber energi listrik untuk menjalankan rangkaian.
- DC Motor
DC motor digunakan pada rangkaian ini untuk mengetahui getaran yang terjadi.
B. Bahan
- Transistor 2N3370
A. Spesifikasi :
Status | Active |
Configuration | SINGLE |
Feedback Cap-Max (Crss) | 3.0 pF |
FET Technology | JUNCTION |
JEDEC-95 Code | TO-18 |
JESD-30 Code | O-MBCY-W3 |
Number of Elements | 1.0 |
Number of Terminals | 3 |
Operating Mode | DEPLETION MODE |
Operating Temperature-Max | 150.0 Cel |
Package Body Material | METAL |
Package Shape | ROUND |
Package Style | CYLINDRICAL |
Peak Reflow Temperature (Cel) | NOT SPECIFIED |
Polarity/Channel Type | N-CHANNEL |
Power Dissipation-Max (Abs) | 0.3 W |
Qualification Status | Not Qualified |
Sub Category | Other Transistors |
Surface Mount | NO |
Terminal Form | WIRE |
Terminal Position | BOTTOM |
Time@Peak Reflow Temperature-Max (s) | NOT SPECIFIED |
Transistor Element Material | SILICON |
B. Konfigurasi Pin :
1. Drain
2. Source
3.Gate
- LED
A. Spesifikasi :
Spesifikasi :
Resistance (Ohms) : 220 V
Power (Watts) : 0,25 W, ¼ W
Tolerance : ± 5%
Packaging : Bulk
Composition : Carbon Film
Temperature Coefficient : 350ppm/°C
Lead Free Status : Lead Free
RoHS Status : RoHs Complient
A. Spesifikasi :
- Trigger Voltage (Voltage across coil) : 5V DC
- Trigger Current (Nominal current) : 70mA
- Maximum AC load current: 10A @ 250/125V AC
- Maximum DC load current: 10A @ 30/28V DC
- Compact 5-pin configuration with plastic moulding
- Operating time: 10msec Release time: 5msec
- Maximum switching: 300 operating/minute (mechanically)
Nomor PIN | Nama Pin | Deskripsi |
1 | Coil End 1 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground |
2 | Coil End 2 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground |
3 | Common (COM) | Common terhubung ke salah satu Ujung Beban yang akan dikontrol |
4 | Normally Close (NC) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu |
5 | Normally Open (NO) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu |
Spesifikasi dari Sound Sensor:
• Tegangan kerja: DC 3.3-5V
• Sensitivitas yang Dapat Disesuaikan
• Dimensi: 32 x 17 mm
• Indikasi keluaran sinyal
• Output sinyal saluran tunggal
• Dengan lubang baut penahan, pemasangan yang mudah
• Mengeluarkan level rendah dan sinyal menyala ketika ada suara
• Output berupa digital switching output (0 dan 1 high dan low)
Konfigurasi Sound Sensor :
Grafik Touch Sensor
- Infrared Sensor
Spesifikasi :
- Tegangan kerja 3-5 V DC
- Konsumsi arus pada 3,3V = 23 mA dan pada 5V = 43mA
- Ukuran board 3.2 x 1,4cm
- Lubang sekrup 3mm
- Proximity Sensor
Spesifikasi :
Model |
ET-305 |
ET-308 |
ET-110 |
|||
Jenis |
Head Sensor, tipe Terlindung |
|||||
Bentuk |
Silindris |
Berulir |
||||
Jarak deteksi |
0 hingga 1,0 mm |
0 hingga 2,0 mm |
||||
Benda yang bisa dideteksi |
Logam non besi |
|||||
Target standar (aluminium, t=1 mm) |
5×5 mm |
10×10 mm |
||||
Penyesuaian kepekaan |
Trimmer 15-putaran |
|||||
Frekuensi tanggap |
1kHz |
400Hz |
300Hz |
|||
Penyesuaian histeresis |
Trimmer 1-putaran (240°), sekitar 2 hingga 10% dari jarak deteksi (variabel) |
|||||
Mode operasi |
N.O./N.C. (dapat dipilih dengan sakelar) |
|||||
Karakteristik suhu |
Maks. +25 hingga -15% dari jarak deteksi pada 23°C, |
|||||
Output |
Output kontrol |
Maks. 100 mA (maks. 40 V), Voltase residu: maks. 1 V |
||||
Jaringan perlindungan |
Polaritas terbalik, peredam lonjakan |
|||||
Rating |
Voltase daya |
12 hingga 24 VDC, ripple (P-P) 10 % atau kurang |
||||
Konsumsi arus |
45 mA atau kurang |
|||||
Resistansi lingkungan |
Peringkat enclosure |
IP67 |
||||
Suhu sekitar |
0 hingga +50 °C |
|||||
Kelembapan sekitar |
35 hingga 85 % RH (Tanpa kondensasi) |
|||||
Resistansi getaran |
10 hingga 55 Hz, Amplitudo ganda 1,5 mm, 2 jam pada masing-masing arah X, Y, dan Z |
|||||
Aksesori |
― |
Sekrup : 2 |
||||
Bobot |
Sekitar 50 g (termasuk kabel 3-m) |
Sekitar 52 g (termasuk kabel 3-m) |
Sekitar 58 g (termasuk kabel 3-m) |
Konfigurasi PIN :
1. VCC
2. GND
3. Output
4. Testpin
Grafik Proximity Sensor
- Rain Sensor
Spesifikasi :
- Sensor ini bermaterial dari FR-04 dengan dimensi 5cm x 4cm berlapis nikel dan dengan kualitas tinggi pada kedua sisinya
- Pada lapisan module mempunyai sifat anti oksidasi sehingga tahan terhadap korosi
- Tegangan kerja masukan sensor 3.3V – 5V
- Menggunakan IC comparator LM393 yang stabil
- Output dari modul comparator dengan kualitas sinyal bagus lebih dari 15mA
- Dilengkapi lubang baut untuk instalasi dengan modul lainnya
- Terdapat potensiometer yang berfungsi untuk mengatur sensitifitas sensor
- Terdapat 2 Output yaitu digital (0 dan 1) dan analog (tegangan)
- Dimensi PCB yaitu 3.2 cm x 1.4 cm
- VCC
- GND
- Output
- Testpin
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.
Simbol dari resistor merupakan sebagai berikut :
Cara Menghitung Nilai Resistor
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
- Berdasarkan Kode Warna
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
4 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
5 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.
Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)
- Berdasarkan Kode Angka
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)
Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm
Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Ground
Ground
atau pertanahan adalah bagian dari Peralatan Listrik rumah. Namun
kebanyakan dari masyatrakat Indonesia sudah terbiasa menyebut pertanahan
atau gruonding ini dengan kata arde.
Ground
atau arde pada instalasi listrik berguna sebagai pencegah terjadinya
kontak antara makhluk hidup dengan tegangan listrik yang terekspos
akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang
dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi
penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :
Ground atau arde pada instalasi listrik berguna sebagai pencegah terjadinya kontak antara makhluk hidup dengan tegangan listrik yang terekspos akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :
- Power Supply
Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :
- Transistor N-Channel JFET
Saluran atau Kanal pada jenis ini terbentuk dari bahan semikonduktor
tipe N dengan satu ujungnya adalah Source (S) dan satunya lagi adalah
Drain (D). Mayoritas pembawa muatan atau Carriers pada JFET jenis
Kanal-N ini adalah Elektron.
Gate atau Gerbang pada JFET jenis Kanal-N ini terdiri dari bahan
semikonduktor tipe P. Bagian lain yang terbuat dari Semikonduktor tipe P
pada JFET Kanal-N ini adalah bagian yang disebut dengan Subtrate yaitu bagian yang membentuk batas di sisi saluran berlawanan Gerbang (G).
Tegangan pada Terminal Gerbang (G) menghasilkan medan listrik yang
mempengaruhi aliran pada pembawa muatan yang melalui saluran tersebut.
Semakin Negatifnya VG, semakin sempit pula salurannya yang akhirnya mengakibatkan semakin kecil arus pada outputnya (ID).
- Transistor N-Channel JFET
Saluran atau Kanal pada jenis ini terbentuk dari bahan semikonduktor tipe N dengan satu ujungnya adalah Source (S) dan satunya lagi adalah Drain (D). Mayoritas pembawa muatan atau Carriers pada JFET jenis Kanal-N ini adalah Elektron.
Gate atau Gerbang pada JFET jenis Kanal-N ini terdiri dari bahan semikonduktor tipe P. Bagian lain yang terbuat dari Semikonduktor tipe P pada JFET Kanal-N ini adalah bagian yang disebut dengan Subtrate yaitu bagian yang membentuk batas di sisi saluran berlawanan Gerbang (G).
Tegangan pada Terminal Gerbang (G) menghasilkan medan listrik yang mempengaruhi aliran pada pembawa muatan yang melalui saluran tersebut. Semakin Negatifnya VG, semakin sempit pula salurannya yang akhirnya mengakibatkan semakin kecil arus pada outputnya (ID).
- Siapkan alat dan bahan ( sensor, resistor, transistor, relay, buzzer ground, power supply, logicstate, led, baterai, voltmeter)
- letakkan alat dan bahan sesuai keinginan
- Sambung alat dan bahan
- Jalankan rangkaian
Prinsip Kerja
Sensor aktif maka sensor akan berlogika satu dan akan mengeluarkan tegangan menuju kaki gate transistor dan meneruskan arus menuju resistor 1k yang menyebabkan transistor menjadi aktif. Kemudian power supply akan memberikan arus ke resistor 10k kemudian menuju kaki drain, kaki source kemudian resistor 1k kemudian menuju ground. Pada kaki drain terdapat tegangan output yang akan diberikan ke relay dan menyebabkan relay aktif kemudian relay akan memberikan arus ke baterai dan motor menjadi aktif.
Download Datasheet transistor pjfet
Download Datasheet Sound Sensor
Download Datasheet Proximity Sensor
Download Datasheet Touch Sensor
Download Datasheet Rain Sensor
Download Datasheet Infrared Sensor
Tidak ada komentar:
Posting Komentar